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THE SLOW ASYMMETRIC MOTION OF TWO DROPS 

IN A VISCOUS MEDIUM * 

A. Z. ZINCHENKO 

An exact solution of Stokes equations is derived in the case of two spherical drops 

moving in a viscous medium at velocities normal to their line of centers. Results 

of numerical calculation of hydrodynamic forces are presented, and the passing to 

the limits of published solutions discussed. The behavior of hydrodynamic forces 

is investigated in the case of contacting spheres. 

A considerable number of publications deals with the problem of finding the exact solu- 

tion of Stokes equations in the case of motion of two solid spherical particles in a viscous 

medium. The solution in /l/ relates to slow rotation of particles about their line of cent- 

ers, while translational motion of spheres along the line of their centers was considered in 

/2-4/. These solutions were obtained in bispherical coordinates and made possible the re- 

presentation of hydrodynamic forces in the form of infinite series whose common terms have 

analytic expressions. A method of exact solution ofstokes equations in the asymmetric case 

when solid spheres translate along or rotate about axes normal to their line of centers was 

developed in /5,6/. Hydrodynamic forces in that case can also be represented by infinite ser- 

ies, but their common terms cannot be determined explicitly, and have to be obtained by solv- 

ing a system of difference equations. The most comprehensive analysis of the asymmetric prob- 

lem was given in /7-9/ which contain numerical data and an extensive bibliography. Owing to 

the linearity of the Stokes problem, the results of /l-9/ make it possible to calculate the 

interaction of two solid spheres in any arbitrary motion. 

An exact solution of the axisymnletric problem of fluid spheres moving along their line 

of centres was obtained in /lO,ll/. In the present paper the exact solution is derived for 

the asymmetric case in which drops move at velocities normal to the line of their centers. 

Owing to the problem linearity the proposed solution together with /lO,ll/ makes possible the 

calculation of the interaction between drops in arbitrary motion. 

An attempt was made in /12/ to obtain an asymptotic solution of the considered problem 

by the method of imaging that is applicable in the case of considerable distances between the 

sphere surfaces. It is shown below that the solution contains errors. 

1, Statement of the problem, The exact solution of Stokes equations, we 
consider fluid sphere of radius a, and nr, with dynamic viscosities ~~ and ~2 moving normal- 

lyto their line of centers at velocities V,and Vs in a medium of viscosity p,. The Reynolds 

numbersare assumed low, and the problem is investigated in the Stokes approximation. As the 

boundaryconditions we take the absence of flow through contact surfaces, the continuity of 

velocity and tangential stress at the sphere surfaces, and the fluid quiescence at infinity. 

Surfacetension at the interface of fluids is assumed fairly high so that the deviation of 

particle shape from spherical can be neglected, and it is not necessary to take into account 

the boundary condition for continuity of normal stresses. 
Let us consider the Cartesian system of coordinates (5, y, z)and the connected with it 

system of cylindrical coordinates (r,& z), with the z-axis on the line of centers 020, (Fig.1). 

The half-plane y = 0, z>O corresponds to 0 = 0. Without loss of generality, we assume that 

in the Cartesian coordinate system Vi= (6i V,O, 0), where hi =O or 6, ~~2 1 (i = 1 ,2). The solu- 
tion structure is assumed to be the same as in /S-8/ and the fluid velocity components in 

the free flow regions denoted in Fig.1 by 1, 2, and e are sought in the form 

u,. ~. V (rF / c mi 2 j- *) cos 0 (1.1) 
v0 : V (5( - +) sin 8, UC= V(zF/c+2~)cosO 

where parameter c of dimension length is determined in 

(1.3) below. The unknown functions F, x3 JI and @ satisfy 
the equations 

L,P 1 L,a, := L,x = L,$ = 0 (1.2) 

1 ,, = a2 / Jr2 + r-V 1 c?r i- a% / 8Z2 - mV2 

As shown in /8/, the Stokes equation rot(Av) m= 0 is in 
this case identically satisfied. 

Using the bispherical system of coordinates 
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cshn 
z=-, csint 

chn-[L r=---, P=cosE 
Chn-P 

It is possible to determine parameter c and the quantities rh> 0 and nz (0 so that the 
sphere of radius ai is the coordinate surface n = ni = const by setting 

chn, = (1 -L E)(I + k) + kc212 
, shqz= -/,.shn,, c = 0, sh q, (1.3) 

l+k+ke 

where IX, is the gap between spheres and k =m a, / as. 
As shown in /8/, solutions of Eqs. (1.2) can be sought in the form 

m CC 

F=I;sin5 Bm(n)P,'(P), @=5sin52 cpn(n)Pn'(P) 
?I=, n=r 
cc 

x= 5sin25~~~x,(11)Pd(~), y = 5n$0*fl(rl)fn(P) 

c = (ch n - P)'/x 

(1.4) 

where P,(p) is a Legendre polynomial of n-th power and f,, (P,,, &and Ip, are linear combinat- 
ions of functions exP [(n i- r/%)-(11 and exp I-(n $- '/$-)I. Using the transform 

a, = Sf, + 24J, - 2 (n - l)(n + 2)xn (1.5) 

Bn_l = -(n - l)f,-1 -B-1 + (n - 2)(n - 1)xn-1 
Yntl = (n + 2)f,+1 - al+1 + b + 2)b + 3) Xntl (n > 1) 

we introduce in addition to f,, m,,, xn and $n functions cc,(n), p,,(n) and m(n). 
To eliminate singularities of the velocity field at points .z = rt c, r = Othat lie inside 

In the external region 
1 
%I” 
PR 
y?l 

e 5 

e 
i’p7l 

(1.6) 

(1.7) 

where the superscripts e and i(i= 1,2) denote quantities in respective regions shown in Fig.1. 
Using the data in /8/ we find that the equation div Y = 0 of continuity in the external 

region is equivalent to two relations 

I,' + K:_, -+ iIf;+, - 2(2n + l)Ane + 2 (71 - 1) A;_, + (1.8) 

2 (n + 2) A;,+l = 0 

.Ine + LL_, + izig,, -,- 2 (2n + 1) B,,e - 2 (n - 1) SK, - 

2 (n + 2) BE+, = 0 (n > 1) 

For inner regions the continuity equations also reduce to two difference equations by 
substituting in the case of region 1 superscript unity for e throughout the first of Eqs. 
(1.8), and in region 2 substitute in the second of Eqs. (1.8) Jn2 etc. for J,' etc. 

The equations of fluid velocity continuity at the sphere surfaces yield 

Using (l-5)-- 
ions to the form 

( 

Zni = rp,J - tpnC, q = qi, i -= 1, 2 

1.9) we can reduce the solenoidality of velocity fie 

I,' + 2 (2/z + 1) nne + e~p (2113) [K;,-, - 2 (n - 1) A’,,_,] + 

ex-p (- 2q12) IJ1:,+1 - 2 (n + 2) A;,,] + c\p [(n -t l/g) Q] X,* = 0 

J,’ - 2 (2n + 1) H,,’ Lm esp (- 211,) [L:‘,_, i- 2 (n - 1) Lg_,] + 

erp(2n1) [G 1 -I- 2 (r2 + 2) K+J + ev I- (,I + ‘iz) q,] Xnl = 0 

Ids in the inner reg- 

(1.10) 

(1.9) 

@>I) 
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To simplify the writing of boundary conditions for impenetrability and of continuity of 
tangential stresses we introduce in the neighborhood of each surface the vector of relative 
fluid velocity v.+ \ - Vi and the quantities 

t~,,=--~F~h~l I-~(I-~PC~~)(D-((X -;- $--S,)sinEshq (l.!li 

which differ from the respective covariant components of vector v,by the coefficient(c1~costt)-' 
(clt r) - p)". The impenetrability conditions urte 11 at the surface of spheres assume the form 

Yn+l ” PL* ! 2 CA I, 
c 

II - 1 fr .I. 2 
3 

‘4pR 
d-1 4- m(P&,, - * = 

(1.12) 
.‘n “/a -.- 1 -&j.'n--l 
8, ~$7{=PX~+Ml~ilr _ exP/-;! !,"i&I1111 1 

n > 1, y1 - Iii, I -- 1, 2 

With allowance for (1.7) the equalities (1.8), (l-10), and (1.12) constitute a system of 
linear equations in I,:> J,", Ken-l, &,, I@,+, and iV'i+, (this is the reason for using trans- 
form (1.5)). The solution of this system yields for the unknowns expressions in terms of 
‘4 mc, i?," (n - 1 <m -< n i- 1) anday,' and XnL. The related formulas are very cumbersome and are 
net presented here, 

The coefficients of all functions fP,,,i,, Xn and ql, may be expressed in terms of A,,,'. n,", 
Z,,,' and 2,' (n - 2 </i-z .< n -!-2)using (1.9) and the transform inverse of (1.5) 

:-: (2n -t 1) j, (2/Z -j- 1) c& -i-Zfn-i-2) @,-iZ (r2-1)yta 
(1.13) 

ti (Zfb + 1) xn - (2n -/- 1) f*, - (32 + 7) p, - (Zn - 5) yn 

6 (2n + 1) J’* --pi-I) n(n-i-1)a,-(n-+-l) (n+2)x 

(2n +” 3) p, - n (n - 1) (272 - 1) -pa 

It remains to satisfy the boundary conditions of continuity of tangential stresses whose 
projections on E and 0 are, respectively, 

au,=/aq = h,i%L&iJrl (1.14) 

~[(~h,l-~~)(~'-~'-t~i,l=E.~ ~[(ch,l-i~)(~~-1ri-t8~)l 

ai == I”, I Fe, 11 ‘)i,i 1,2 
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(I -t ai) (n + */z) f,,* = df,,e:dq &hi (n + ‘h) f,' 
q=qi, i=l,2 

where the quantities fin*, y,,* and r&f are determined similarly to f,,* using the upper sign for 

i = 1 and the lower for i = 2. 
Using the second of Eqs. (1.14) we shall show that f,,* can be expressed in terms of 

Ame, B,', Z,,,’ and Z,z for n-f<rn <n+l. Substitution of corresponding expressions for 

f$+ and ff,, in (1.16) makes it possible to obtain two fourth-order difference equations in 

A,‘, B,‘, 2,’ and Z,,‘. 
The expressions for (ch q- CL) (x--II, + i$) in the continuity equation div v* = 0 for the 

neighborhood of the sphere of radius ai in bispherical coordinates is obtained from (1.14) in 

the form 
3 Sk 71 a 

[& ---](ll+hil(~)+ 
ckq--P drl 

(1.17) 

[ 

3sincshq asine a 
i&j=q--- chrl-p arl 1 (us-&u<)=O, q=qi, i=l,2 

which with allowance for (1.11) and the impenetrability conditions can be represented in the 

form 

(1.18) 

21 p- h@‘) - sin5 sh q $[(f + qc -6i)--li(~i+$i-_4)]= 

= 0, rl = % i=1,2 
Using (l-4), (l-5), (1.9), and (1.12) we represent (1.18) in the form of the difference 

equation 

(1.19) 

2 (n + 2) ch r) 
2n+3 

q = vi, i = 1, 2 
where the upper sign is taken for i = 1 and the lower for i = 2. 

The obtained representation of f,,’ together with the expressions for coefficients 

J,“, Kf,_,, Li_,, Mi,, and Ni+, in terms of A,’ and B,” (n - 1 < m < n + 1) and X,' andX,2 iiies 

it possible to obtain from (1.16) two fourth order difference equations in A,‘, B,“, Z,,l and 
2,:. The second pair of fourth order equations is obtained by using for /,r another expression 

based on the first of equalities (1.13). 

Remark, An attempt at direct reduction of condition (1.14) to four difference equa- 

tions in Ane,Bne,Zn’ and Znz results in two of these containing differences of the sixth order 

and two of the eighth order. 

The final system of equations is of the form 

w,+h_ = 6&-j- IQ.,", n > 1 
(1.20) 

T,’ m= 0, n+k<l 
where w, is a column vector with components 

Ane exp [-- (n + V2) ~1, B,e esp [(n -t ‘1,) 1111, z,,L, Z,,* 

Since the derivation of analytic expressions for elements of matrices TfLi, of the fourth 

order and of vectors S,’ would be extremely laborious, a subroutine was developed for the 

computer which made possible the numerical determination of these for any n in accordance with 
the expounded scheme. 

As the necessary condition of flow regularity up to the surface of spheres we specify 

that the solution \v, of system (1.20) must approach zero as n-+ 03. 
When w, is known it is possible to determine all functions (~,,.f,, xn and I$,,,. 

2, Calculation of hydrodynamic interaction of sphere, Note that all monlents 
of hydrodynamic forces about the particle centers of mass are always zero. The moment of 

forces acting on a sphere of radius ai is equal 

s CR x P,‘) dS 
si (2.1) 

where Si is the sphere surface area, R is the vector from the sphere center to the current 
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point of its surface, and pnis the stress vector. Taking into account the collinearity of 
vector R and the vector of the normal and the conditions of continuity of tangential stresses, 

vector pni can be substituted in (2.1) for vector pnP and, then, use the Gauss theorem and 
the nondivergence of the stress tensor that follows from Stokes equations. 

It follows from (1.1) that only the x-components of forces can be nonzero. We set 

f,‘(9) C,,” tarp [(n -t ‘i2) 111 -t D,” esp I- (n + ‘/%) ~1 

As shown in /8/, formulas 

F,"= - np...aiJshqi 8 f/z i n(n -t I)(',, (2.2) 
?I=1 

are valid for the x-components of forces acting on particles, independently of boundary con- 
ditions at the sphere surfaces. 

The sums of series (2.2) were computed as follows. From the two equations (1.19) we 

obtain 

n(i) I),a::~~=,~~ir,i,,,;+~nr..~. n b' (2.3) 

Matrices R,j and vectors (&I were determined numerically. Then, applying to system (1.20) 

the method of matrix run-through, it is possible to express w, in terms of w,,,, and w,+$ ( the 

initial values of running coefficients are determined by the last of conditions (1.20)).Hence, 

using (2.3), we can write 

Matrices Qnb and vectors JJ,] are determined recurrently. Numerical computations show 

that always Q,", Q,-'-0 as ?L-+ CO. Since w,,+O, hence for calculating forces it is suffic- 

ient to determine the limits of H,’ and JJ,,2 as n-ta~. 

We stress that only a straight through run is used with this algorithm. 

In the case of arbitrary motion of the spheres at velocities V, and V? normal to the 

line of centers we represent the hydrodynamic forces as follows: 

The dependence between coefficients of drag determined in /12/ is equivalent to the rela- 

tion 
.\I1 - P.L, ‘2,? 

(2.4) 
The calculated coefficients &j for I; = 0.1, 0.5, and 1.0 and various e and h (hi == ?., -= h) 

are shown in Table 1, where for each pair of h,s a column of values of Aii,A,,,h,, appears for 

k = 0.1 and 0.5, while for k = 1.0 the column contains only the values of A,,, L$lr since 

then i&? := An - _I,, for k = 1 . 
Calculations were carried out with doubled accuracy on a high-speed electronic computer. 

Calculations had shown that for small E the error of calculations with standard accuracy was 

sometimes insufficient, particularly in the case of large 1.. The proposed solution is gener- 

ally not valid when A, _= A, _ oo, since conditions (1.14) imply that for I) ?)i the tangent 

stresses are zero in inner regions. Hence system (1.20) has a nonunique solution because the 

solution of the homogeneous system corresponds to arbitrary rotation of solid spheresaboutaxes 

that pass through /their/ centers and are parallel to the Y-axis. However, the moment of 
forces remains zero at the limit A,, X,-t 00 and, consequently, for large but finite h, and AZ 
the coefficients Aii must be close to the corresponding values of -\,,' for spheres moving with 
free rotation. The values of h,j" can be determined as follows. When a solid sphere translat- 

es at velocity (V,,O,O) and rotates at velocity (0, Qi,O) (defined in a Cartesian coordinate 
system), then force Fix and the force moment Gil' acting on the sphere may, according to /7, 
S/, be represented in the form 

(in a somewhat different notation than in /7,8/). Expressing angular velocities in terms of 
translational ones and taking into account that the moments Gi" are zero, we obtain :jijs as a 
function of sixteen coefficients F:,,,, F:,,,, Gb,l and G’;,,,. For certain pairs of k,s from the 
Table it is possible to calculate the values of lt;j' using the values of F,j'. F,j', G,j' and G,j' 
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tabulated in /7,8/. It a ppears that for the same k,e and I+= IO'the values of. hij in Table 1 
coincide to a high degree of accuracy with the corresponding values of hija (for instance, the 
values of An and i\r%' differ by less than unity of the least significant decimal digit).Note 
that the method of calculating A$ differs in principle from the proposed here method of 
calculating &j. 

in asymptotic formula for FIX was obtained in /12/ by the method of imaging, which for 
A,,?&-, w becomes the approximate formula derived there fox solid spheres moving normally 

to the line of centers without rotation. The authors of /12/ had erroneously assumed that 

* 

0.0 

10.0 

30.0 

10’ 

0.0 

ilJ.0 

30.0 

in 

0.0 

10.0 

30.0 

10’ 

e40.0 

0.6703 11.6722 0.6617 0.6301 
0.0160 0.0210 0.0276 0.02&4 
0.6545 0.6522 0. 6506 0.6511 
0.9844 1. (Ii!36 1.13” _i 1.4441 
0.0365 0.0512 0.0640 0.1215 
0.9467 0.9446 0.9483 0.9511 
1.0052 1.0270 1.1848 1. ti352 
0.0382 0.0538 0.0904 0.1424 
0.9656 0.9637 0.9F81 0.9717 
f .Oi67 1.0402 1.2174 i .7806 
0.0391 0.11552 0.0944 0.1581 
0.9760 11.9741 #.9791 O.!iS31! 

0.6686 
0.0257 
0.642Y 
O.‘J75Y 
0.0551 
O.Q208 
0.9950 
0.0574 
0. Q385 
1.WG8 
0.0587 
0.9484 

0.6719 0.6871 
0.0410 0.11859 
0.6299 0. Gil22 
0.9869 1 .ow; 
0. IJ919 0.2124 

0.8949 0.5431 
I. 0076 l.n9lll 
0.0958 0.2234 
0.9117 0.55% 
1 .OlYU 1. 1!171 
0.0980 0.x,7 
0. ‘jaw 0.8660 

0.6673 0.6701 0. m56 
0.0278 ct.0479 0.1141 
0.9733 0. Y806 i.Ortli 
0.0592 0.1032 0.2703 
0.9931 I.00118 1.0660 
0.0617 0.1075 0.2833 
1.0040 1.0119 1.0799 
0.0630 0.1099 0 .2905 

0.6955 
O.ii23 
II. xcr4 
1.2217 
U.3416 
0.8286 
1. “897 
0.3737 
0.8441 
f .3355 
0.3%4 
0 Sj‘,b ” I 

0.7u51 
0. IF77 
1.1811 
0.4787 
1.2236 
0.5158 
1.2579 
0.5394 

5.0 1.0 u.1 

- 

I - 
Table 1 

1.0 0.7083 3.7087 
P.f760 3.1769 
1.23Gi z .2457 
P.54OC -I. 550.7 
1.3104 1.3323 
D.6040 ? .S26O 
I.3696 1.4”77 
\1.0570 I.7136 

0.0, 

-- 

0.6224 O.G31j 

0.0283 0.0??4 
O.6512 0.6513 
1 ,c,O85 l.G47U 
0.1384 0.1424 
0.9ji4 0. 9514 
1 .Q8rx 2.1271 
0.1752 it. f 1325 
0.9723 It.‘1724 
2.3998 2.9487 
0.2211 0.2767 
0.9342 0.9848 

O.lW5 Il. 6954 
i~.1157 0.1160 
0.5&2 0. 5891 
I. 2554 I. 1Yr,8 
0.3%7 I’.3S7j 
il.H3~~3 II. s312 
I R!)Q:! 1.43c. 
0.43G5 i).45/iF 
II.8473 n.8406 
1.5(118 t .603J 
II.4572 I)..5413 
P.8563 ;? * SF%# 
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this confirms the correctness of the solution derived by them. 3ut, since 
correct asymptotic formula for FllD as h,, Al+ 00 must be in agreement with 
otic solution for solid spheres moving with free rotation (see /13/J. There 
such agreement, hence it is possible to assume the existence of an error in 

/12/. An exact calculation by the method used in /12/ yields 

F,*= - 2n}Qf,$Q 
I [ 

1 c'*5 1 -' ~P,PIWl, -:- ~p,q~n,a,~ ;- Bq,p*ul%$ + 

k6 pI’p:%,“(1,2 I [ - I,,r + j9zEz -I- -? ‘IjCt,” _I- + ~ip;‘P~iI~hz -; 4 
b~P&&a? a- & q,,D.?uI%,~ 3 s/l hP&w% r *& r.h~p&,%,” 

.I$ = (1 -. I*)-f. (2 -j. 3h,), pi = (14. q-i, cl,==ttiil 

21: j _ .Ij,‘, the 
the known asympt- 
is actually no 
the formula in 

(2.5) 

where I is the distance between spheres. The coefficients at a,u,*, arap* and q3a,' were incorrect- 
ly determined in /12/. The comparison with numerical results shows that formula (2.51 is a 
correct asymptotic expansion of FIX as OLI, a* -f 0. For k= 0.5 and E= 10 and all .I the values 
of coefficients of Aij calculated by formula (2.5) coincide with the exact values within not 
less than the fourth significant digit. However in the case of nearly touching spheres form- 
ula (2.5) yields, as a rule, a considerable error, particularly for large a, and A,. For 
example, for k= 0.25, a= 0.00s' and A= 30 it follows from formula (2.5) that AI1 = 1.12, A,, = 9.20 
and A,, = 0.921, while the exact solution yields the following values: AlI= 1,63il,~,, = 0.32921 
and Aza== 0.92885. Moreover, formula (2.5) does not show the nonmonotonic behavior of 
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coefficients of 

3, The 
Let us consider 

Ah and A,, which is generally present at a change of F (see Table 1). 

behavior of coefficients of -dij in the case of touching spheres, 
the dissipative function /I‘ 

which corresponds to the motion of two spheres. In this formula D, and Di are the regions 

denoted in Fig.1 by the symbols e and i (i= 1, Z), and ejk are components of strain rate tensor. 

Boundary conditions on the surface of spheres make it possible to represent E as a quadratic 
form of velocities: E = - (F,V, + F,V,). The dissipative function Es in the case of two sol- 

id spheres moving with rotation can be represented in exactly the same form. Taking into 

account the boundary conditions for the remainder E"- E (for the same e, ai, and Vi ) we 
obtain the formula 

i?* - E 2 = ~1, S e”~Fjk do + , e;k=e,hs-e;,, 

‘)e isI i, 

The components ejks of the deformation rate tensor relate to the motion of solid spheres. 

Taking into account (2.4) we can obtain, owing to the positive definiteness of the quadratic 

forms of E and E8- E, the inequalities 

0 < .\,I < :11**, 0 < A,, -I-- A,, < _\:*" + .\zls (3.1) 

(l%,)' < kA,, (A?? + A,,) 

The asymptotic formulas in /9/ for coefficients Fijt, Fijr, Gij’, and Gijr imply that the valu- 

es of AijS remain finite as e-0 and 

Aij"(k, E) llij’ (k, 0) -k 0 (Ih El-‘), E + 0 (3.2) 

It follows from (3.1) that in the case of fluid spheres coefficients A&j have no singul- 

arities as e-+0 (unlike in the axisymmetric case, see /14/). Moreover, numerical computa- 

tions show that for fixed k, h,, and h, 

Ai, (k, F, ?.,, A,) :- Aij (k, 0, h,. h2) -(I 0 (t.) (3.3) 

as s-+0. By virtue of (3.2) relation (3.3) is inhomogeneous with respect to h, and & when 

h,, 1, + co. 

The author thanks A. M.Golovin for useful discussion. 
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